
QUSTION BANK-- ADVANCED JAVA

BASIC JAVA CONCEPTS

1. Q: What is the Java Virtual Machine (JVM)?

A: The JVM is a virtual machine that enables a computer to run Java

programs. It converts Java bytecode into machine language and executes

it.

2. Q: What is the difference between JDK, JRE, and JVM?

A: JDK (Java Development Kit) is a software development kit for

developing Java applications. JRE (Java Runtime Environment) provides

libraries, Java Virtual Machine (JVM), and other components to run

applications written in Java. JVM (Java Virtual Machine) is the engine

that runs Java applications.

3. Q: Explain the concept of Object-Oriented Programming (OOP).

A: OOP is a programming paradigm based on the concept of objects,

which can contain data and code: data in the form of fields (often known

as attributes or properties), and code, in the form of procedures (often

known as methods).

4. Q: What are the main principles of OOP?

A: The main principles of OOP are Encapsulation, Inheritance,

Polymorphism, and Abstraction.

5. Q: What is a class in Java?

A: A class is a blueprint for creating objects, providing initial values for

state (member variables or fields) and implementations of behavior

(member functions or methods).

6. Q: What is an object in Java?

A: An object is an instance of a class. It contains both data (attributes)

and behavior (methods).

7. Q: What is inheritance in Java?

A: Inheritance is a mechanism where a new class inherits properties and

behavior (fields and methods) from an existing class.

8. Q: What is polymorphism in Java?

A: Polymorphism allows methods to do different things based on the

object it is acting upon, even though they share the same name.

JDBC ARCHITECTURE

9. Q: What is JDBC?

A:JDBC (Java Database Connectivity) is an API that enables Java

applications to interact with databases. It provides a set of classes and

interfaces for establishing a connection, sending SQL queries, and

processing the results.

10. Q: What are the main steps in the JDBC process?

A:The main steps include:

Load and register the driver.

Establish a connection to the database.

Create a Statement or PreparedStatement object.

Execute SQL queries using executeQuery() or executeUpdate().

Process the result set.

Close the connection and resources.

11. Q: What is the difference between Statement and PreparedStatement?

A: Statement: Used for executing simple SQL queries without

parameters. It is prone to SQL injection attacks.

PreparedStatement: Used for executing parameterized SQL queries. It

precompiles the query, improving performance and security by

preventing SQL injection.

12. Q: How do you load a JDBC driver?

A:You load a JDBC driver using the Class.forName() method. For

example:

Class.forName("com.mysql.jdbc.Driver");

13. Q:What is a ResultSet in JDBC?

A: A ResultSet is an object that holds the data returned from a database

after executing a SQL query. You can navigate through its rows and

access the columns of each row.

14. Q: How do you handle SQL exceptions in JDBC?

A: SQL exceptions in JDBC are handled using a try-catch block. The

SQLException class provides useful methods such as getMessage(),

getErrorCode(), and getSQLState() to handle errors.

15. Q:What are JDBC transactions, and how do you manage them?

A: JDBC transactions allow you to group multiple SQL operations as a

single unit of work. Transactions can be controlled using:

setAutoCommit(false) to disable auto-commit.

commit() to save changes.

rollback() to undo changes in case of failure.

16. Q: What is JDBC batch processing?

A: JDBC batch processing allows you to group multiple SQL statements

into a batch and execute them together to improve performance. It

reduces the number of database round trips. Example:

PreparedStatement pstmt = conn.prepareStatement("INSERT INTO users

VALUES (?, ?)");

pstmt.setString(1, "Alice");

pstmt.setInt(2, 25);

pstmt.addBatch();

pstmt.executeBatch();

17. Q: What is the difference between executeQuery(), executeUpdate(), and

execute()?

A:

executeQuery(): Used for executing SELECT queries that return a

ResultSet.

executeUpdate(): Used for executing INSERT, UPDATE, DELETE

statements. It returns the number of affected rows.

execute(): Used for executing any SQL statement (query or update). It

returns a boolean: true if the result is a ResultSet, false otherwise.

18. Q: What are JDBC drivers, and how many types are there?

A: JDBC drivers are classes that implement the JDBC API to connect to a

database. There are four types of JDBC drivers:

Type 1: JDBC-ODBC Bridge Driver.

Type 2: Native API Driver.

Type 3: Network Protocol Driver.

Type 4: Thin Driver (Pure Java Driver).

GENERICS & COLLECTION FRAMEWORK APIs

19. Q:What are Generics in Java and why are they used?

A: Generics enable types (classes and methods) to be parameterized. By

using generics, you can write a single method or class that works with

different types of data, ensuring type safety at compile-time. This

prevents ClassCastException and eliminates the need for casting in many

cases.

20. Q: What is the difference between List<?> and List<? extends T>?

A:

List<?> is a wildcard that can represent a list of any type.

List<? extends T> limits the wildcard to classes that are subclasses (or

same as) of T. This is useful for methods that can work with any subclass

of a given type but don’t modify the list.

21. Q: Explain the PECS principle in Generics.

A:

PECS stands for Producer Extends, Consumer Super:

Use <? extends T> when you need to read from a collection (because the

collection is producing items of type T).

Use <? super T> when you need to write to a collection (because the

collection is consuming items of type T).

22. Q: What is a Type Erasure in Generics?

A: Type Erasure is the process by which generic types are replaced with

their raw types during compilation. For example, List<Integer> becomes

List at runtime. Type information is erased to ensure compatibility with

legacy code (pre-Java 5).

23. Q: How does the HashMap work in the Collection Framework?

A: HashMap stores key-value pairs, where the key is used to determine

the bucket (via hashing). The key’s hashCode() determines the bucket

index, and collisions are resolved using a linked list or a balanced tree if

too many keys have the same hash value.

24. Q: What is the difference between ArrayList and LinkedList?

A:

ArrayList: Implements a dynamic array; good for random access (O(1)

for get()), but slow for insertions/deletions in the middle (O(n)).

LinkedList: Implements a doubly linked list; good for insertions/deletions

(O(1)), but slower for random access (O(n)).

25. Q: What is the purpose of Comparator and Comparable interfaces?

A:

Comparable: Objects that implement this interface can be compared using

their natural order (e.g., Integer sorts numbers in ascending order). It uses

the compareTo() method.

Comparator: Allows you to define custom ordering of objects. It is

implemented in a separate class and uses the compare() method.

26. Q: What is the difference between Set and List?

A:

Set: A collection that does not allow duplicate elements. Common

implementations include HashSet (no order), LinkedHashSet (maintains

insertion order), and TreeSet (sorted).

List: An ordered collection that allows duplicates and maintains insertion

order. Common implementations include ArrayList and LinkedList.

27. Q: How does ConcurrentHashMap differ from HashMap?

A:

HashMap is not thread-safe. If multiple threads access it simultaneously

without proper synchronization, it may result in inconsistent data.

ConcurrentHashMap is thread-safe and uses a mechanism of lock-

striping, where only parts of the map are locked during updates, thus

providing better concurrency than synchronized HashMap.

28. Q: What is the role of Wildcards in Generics?

A: Wildcards allow you to pass different types into a generic class or

method while still ensuring type safety. There are three types of

wildcards:

? (unbounded wildcard): Accepts any type.

? extends T (bounded wildcard): Accepts T or any of its subtypes.

? super T (lower-bounded wildcard): Accepts T or any of its supertypes.

SOCKET PROGRAMMING

29. Q: What is socket programming in Java?

A: Socket programming in Java is a way of connecting two nodes on a

network to communicate with each other. One socket listens on a particular

port at an IP, while another socket reaches out to the other to form a

connection.

30. Q: What is the difference between TCP and UDP?

A: TCP (Transmission Control Protocol) is connection-oriented and

provides reliable communication. UDP (User Datagram Protocol) is

connectionless and provides a faster, but less reliable communication.

31. Q: How do you create a server socket in Java?

A:

 ServerSocket serverSocket = new ServerSocket(portNumber);

Socket clientSocket = serverSocket.accept();

32. Q: How do you create a client socket in Java?

A:

 Socket socket = new Socket("hostname", portNumber);

33. Q: How do you send data through a socket?

A:

 OutputStream outputStream = socket.getOutputStream();

PrintWriter out = new PrintWriter(outputStream, true);

out.println("Hello, World!");

34. Q: How do you receive data through a socket?

A: InputStream inputStream = socket.getInputStream();

BufferedReader in = new BufferedReader(new

InputStreamReader(inputStream));

String response = in.readLine();

35. Q: What is the ServerSocket class used for?

A: ServerSocket is used to create a server that listens for incoming client

connections.

36. Q: How do you close a socket in Java?

A: socket.close();

37. Q: What is a DatagramSocket in Java?

A: DatagramSocket is used to create a socket for sending and receiving

datagram packets in UDP communication.

38. Q: How do you send a datagram packet in Java?

A:

DatagramSocket socket = new DatagramSocket();

byte[] buffer = "Hello".getBytes();

InetAddress address = InetAddress.getByName("hostname");

DatagramPacket packet = new DatagramPacket(buffer, buffer.length,

address, port);

socket.send(packet);

JSP (JAVA SERVER PAGES)

39. Q: What is JSP?

 A: JSP (JavaServer Pages) is a technology that helps software developers

create dynamically generated web pages based on HTML, XML, or other

document types, using Java.

40. Q: Describe the lifecycle of a JSP page.

 A: The lifecycle includes Translation, Compilation, Initialization,

Execution, and Cleanup.

41. Q: What are JSP directives?

A: JSP directives provide global information about an entire JSP page and

are used to set page-level instructions. The main directives are page,

include, and taglib.

42. Q: What is a JSP scriptlet?

 A: A JSP scriptlet is a piece of Java code embedded within the HTML

code in a JSP page, denoted by <% %> tags.

43. Q: How do you include a static file in a JSP page?

A: <%@ include file="header.html" %>

44. Q: What is a JSP expression?

A: A JSP expression is used to output Java values directly into the

HTML, denoted by <%= %> tags.

45. Q: How do you handle exceptions in JSP?

A: You can use the errorPage attribute of the page directive to specify an

error page:

<%@ page errorPage="error.jsp" %>

46. Q: What are JSP implicit objects?

A: JSP implicit objects are pre-defined variables that provide access to

various objects related to the web environment. Examples include

request, response, session, application, out, config, pageContext, page,

and exception.

47. Q: What is the role of the jsp:include action tag?

 A: The jsp:include action tag includes the content of another resource

(like a JSP page or HTML file) at runtime.

48. Q: What is the difference between jsp:include and the include directive?

A: The include directive (<%@ include %>) includes content at page

translation time, whereas the jsp:include action tag includes content at

request time.

SERVLETS

49. Q: What is a Servlet in Java?

 A: A Servlet is a Java class that is used to extend the capabilities of

servers hosting applications accessed by means of a request-response

programming model.

50. Q: Describe the lifecycle of a Servlet.

 A: The lifecycle includes Initialization (init method), Service (service

method), and Destruction (destroy method).

51. Q: How do you configure a Servlet in a web application?

A: You can configure a Servlet in the web.xml file:

<servlet>

 <servlet-name>exampleServlet</servlet-name>

 <servlet-class>com.example.ExampleServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>exampleServlet</servlet-name>

 <url-pattern>/example</url-pattern>

</servlet-mapping>

52. Q: What is the HttpServlet class?

A: HttpServlet is a class that extends GenericServlet and provides

methods, such as doGet, doPost, doPut, and doDelete, to handle HTTP-

specific services.

53. Q: How do you handle GET requests in a Servlet?

 A: protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

 // Handle GET request

}

54. Q: How do you handle POST requests in a Servlet?

A: protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

 // Handle POST request

}

55. Q: What is the ServletConfig interface?

 A: ServletConfig is an interface that provides servlet configuration

information to the servlet at runtime.

56. Q: What is the ServletContext interface?

 A: ServletContext is an interface that provides a servlet with information

about its environment.

57. Q: How do you forward a request from one Servlet to another?

A: RequestDispatcher dispatcher =

request.getRequestDispatcher("anotherServlet");

dispatcher.forward(request, response);

58. Q: How do you redirect a request in a Servlet?

 A: response.sendRedirect("anotherServlet");

JAVA BEANS

59. Q: What is a JavaBean?

A: A JavaBean is a reusable software component that follows certain

conventions, including having a no-argument constructor, being

serializable, and providing getter and setter methods.

60. Q: What are the key features of a JavaBean?

A: Key features include properties, events, methods, and persistence.

61. Q: How do you create a simple JavaBean?

 A: public class MyBean implements Serializable {

 private String property;

 public MyBean() {}

 public String getProperty() {

 return property;

 }

 public void setProperty(String property) {

 this.property = property;

 }

}

62. Q: What is the significance of the no-argument constructor in a

JavaBean?

 A: The no-argument constructor allows the bean to be instantiated easily

and is required for the bean to be managed by various frameworks and

tools.

63. Q: What are getter and setter methods in a JavaBean?

 A: Getter methods retrieve the value of a property, and setter methods set

or update the value of a property.

64. Q: Explain the concept of bound properties in JavaBeans.

A: Bound properties are properties that notify listeners when their values

change.

65. Q: What are constrained properties in JavaBeans?

A: Constrained properties are properties that notify listeners when their

values change and allow the change to be vetoed.

66. Q: How do you implement event handling in JavaBeans?

 A: Event handling is implemented using listener interfaces and methods

for adding and removing listeners.

67. Q: What is the PropertyChangeListener interface?

 A: PropertyChangeListener is an interface for receiving property change

events.

68. Q: How do you use JavaBeans in JSP?

A: You can use JavaBeans in JSP using the (JavaServer Pages)

<jsp:useBean id="myBean" class="com.example.MyBean"

scope="session" />

<jsp:setProperty name="myBean" property="property" value="value" />

<jsp:getProperty name="myBean" property="property" />

