Guru Tegh Bahadur Institute of Technology, New Delhi Department of Computer Science & Engineering

QUESTION BANK

SUBJECT: DATA SCIENCE

Semester: 7th SUB CODE: CIE 405T

Unit I: Introduction to Data Science and Data Pre-processing

1. What is Data Science?

Answer: Data Science is an interdisciplinary field that uses scientific methods, algorithms, and systems to extract insights and knowledge from structured and unstructured data.

2. How is Data Science different from AI and Machine Learning?

Answer: AI is the broader concept of machines performing tasks in a way that we consider intelligent. Machine Learning is a subset of AI focusing on algorithms that learn from data. Data Science involves the collection, processing, and analysis of data using various techniques, including Machine Learning.

3. What are some popular dataset repositories?

Answer: Popular dataset repositories include UCI Machine Learning Repository, Kaggle, and Google Dataset Search.

4. What are the main steps in data pre-processing?

Answer: The main steps include data cleaning (handling missing values), normalization, scaling, encoding categorical variables, and data transformation (e.g., log transformations).

5. What is the importance of data scaling in pre-processing?

Answer: Data scaling ensures that features have comparable ranges, which can significantly improve the performance of machine learning algorithms that rely on distance-based measures, such as KNN or SVM.

6. What is similarity and dissimilarity in data analysis?

Answer: Similarity measures quantify how alike two data objects are, while dissimilarity measures how different they are. Common similarity measures include Euclidean distance and cosine similarity.

7. What is Principal Component Analysis (PCA)?

Answer: PCA is a dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional form while retaining the most important variance in the data.

8. Why is data visualization important in Data Science?

Answer: Data visualization helps in understanding data patterns, relationships, and trends. It also aids in communicating findings clearly and effectively.

9. What is the Chi-Square test?

Answer: The Chi-Square test is a statistical method used to determine if there is a significant association between categorical variables.

10. What is data transformation, and why is it needed?

Answer: Data transformation involves converting data into an appropriate format or structure for analysis. It helps to make the data more interpretable and improves model performance.

Unit II: Regression Analysis

11. What is regression analysis?

Answer: Regression analysis is a statistical technique used to model and analyze the relationship between a dependent variable and one or more independent variables.

12. What is linear regression?

Answer: Linear regression is a method to model the relationship between a dependent variable and one or more independent variables assuming a linear relationship.

13. What is the difference between linear and generalized regression?

Answer: Linear regression assumes a linear relationship between the variables, while generalized regression extends to model more complex relationships (e.g., logistic regression for binary outcomes).

14. What is regularized regression?

Answer: Regularized regression adds a penalty term to the loss function to prevent overfitting. Examples include Ridge and Lasso regression.

15. What is cross-validation, and why is it important?

Answer: Cross-validation is a technique to evaluate model performance by partitioning data into training and testing sets multiple times. It helps ensure that the model generalizes well to unseen data.

16. What is the purpose of dividing data into training and testing sets?

Answer: Splitting data into training and testing sets allows the model to learn from one part and be evaluated on another to check its generalization ability.

17. What is Ridge regression?

Answer: Ridge regression is a type of regularized regression that adds a penalty equal to the square of the magnitude of coefficients, reducing overfitting.

18. What are latent variables in regression analysis?

Answer: Latent variables are variables that are not directly observed but are inferred from the model, typically affecting the observed variables.

19. What is Structural Equation Modeling (SEM)?

Answer: SEM is a multivariate statistical analysis technique that models complex relationships between observed and latent variables.

20. What is the difference between regular and Ridge regression?

Answer: Ridge regression adds an L2 penalty to the cost function, which helps reduce overfitting by shrinking the coefficients, whereas regular regression does not include this penalty.

Unit III: Time Series Analysis and Forecasting

21. What is time series data?

Answer: Time series data consists of observations collected or recorded at regular time intervals, such as daily stock prices or monthly sales.

22. What is stationarity in time series data?

Answer: Stationarity refers to a time series whose statistical properties, like mean and variance, do not change over time.

23. What are the common techniques to test for stationarity?

Answer: Common techniques include the Augmented Dickey-Fuller (ADF) test, KPSS test, and visual inspection of the data.

24. What is seasonality in time series analysis?

Answer: Seasonality refers to patterns that repeat at regular intervals over time, such as daily, monthly, or yearly cycles in a dataset.

25. What is an autoregressive (AR) model?

Answer: An AR model is a type of time series model where the current value is regressed on its previous values.

26. What is the difference between AR and MA models?

Answer: AR models use past values to predict future ones, while MA (Moving Average) models use past forecast errors.

27. What are recurrent models in time series forecasting?

Answer: Recurrent models, such as RNNs and LSTMs, are neural network architectures that handle sequences and capture temporal dependencies.

28. What is the purpose of time series decomposition?

Answer: Time series decomposition breaks a series into its underlying components, such as trend, seasonality, and residual, to better understand and model the data.

29. How can we evaluate the performance of time series models?

Answer: Common metrics include Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).

30. What is the difference between univariate and multivariate time series?

Answer: A univariate time series contains a single variable observed over time, while a multivariate time series includes multiple variables.

Unit IV: Classification and Clustering

31. What is classification in Data Science?

Answer: Classification is a supervised learning task where the objective is to predict a categorical label for a given input based on training data.

32. What is Linear Discriminant Analysis (LDA)?

Answer: LDA is a classification technique that finds a linear combination of features that best separates two or more classes.

33. What is a Support Vector Machine (SVM)?

Answer: SVM is a supervised learning algorithm used for classification and regression tasks, which finds the hyperplane that best separates classes in the feature space.

34. What are decision trees?

Answer: Decision trees are tree-like models used for classification or regression, where the data is split based on feature values to make decisions.

35. What is the difference between classification and regression?

Answer: Classification predicts categorical outcomes, while regression predicts continuous values.

36. What is clustering in data analysis?

Answer: Clustering is an unsupervised learning technique that groups similar data points together based on certain criteria, without prior labels.

37. What is K-Means clustering?

Answer: K-Means is a clustering algorithm that partitions data into K distinct clusters based on minimizing the variance within clusters.

38. What are the strengths and weaknesses of K-Means?

Answer: Strengths include its simplicity and scalability. Weaknesses include sensitivity to initial centroid selection and difficulty handling non-spherical clusters.

39. What is hierarchical clustering?

Answer: Hierarchical clustering builds a hierarchy of clusters, either agglomeratively (bottom-up) or divisively (top-down), without specifying the number of clusters in advance.

40. What is DBSCAN, and how does it differ from K-Means?

Answer: DBSCAN is a density-based clustering algorithm that can identify arbitrarily shaped clusters and handle outliers. Unlike K-Means, it does not require specifying the number of clusters.

41. What is the silhouette score?

Answer: The silhouette score is a measure of how similar an object is to its own cluster compared to other clusters. It ranges from -1 to 1, with higher values indicating better clustering.

42. What are the key applications of classification techniques?

Answer: Common applications include spam detection, image recognition, and medical diagnosis.

43. How is performance evaluated in classification models?

Answer: Common evaluation metrics include accuracy, precision, recall, F1-score, and AUC-ROC.

44. What are the main differences between supervised and unsupervised learning?

Answer: Supervised learning uses labeled data to train models, while unsupervised learning finds patterns in unlabeled data.

45. What is overfitting in classification models?

Answer: Overfitting occurs when a model learns the noise in the training data, performing well on training but poorly on unseen data.

46. What is underfitting in machine learning?

Answer: Underfitting happens when a model is too simple to capture the underlying pattern in the data, leading to poor performance on both training and testing data.

47. What are decision boundaries in classification?

Answer: Decision boundaries are the regions in the feature space where the decision changes from one class to another in a classification model.

48. What is an ensemble method in classification?

Answer: Ensemble methods combine multiple models to improve overall prediction performance. Examples include Random Forest and Gradient Boosting.

49. What is bagging in ensemble methods?

Answer: Bagging (Bootstrap Aggregating) involves training multiple models on random subsets of the data and averaging their predictions to reduce variance.

50. What is boosting in machine learning?

Answer: Boosting sequentially trains models, where each model attempts to correct the errors of the previous one, to improve accuracy and reduce bias.